Semantic segmentation of methane plumes with hyperspectral machine learning models
Methane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated w...
Главные авторы: | Růžička, V, Mateo-Garcia, G, Gómez-Chova, L, Vaughan, A, Guanter, L, Markham, A |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Springer Nature
2023
|
Схожие документы
-
Semantic segmentation of methane plumes with hyperspectral machine learning models
по: Vít Růžička, и др.
Опубликовано: (2023-11-01) -
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
по: A. Vaughan, и др.
Опубликовано: (2024-05-01) -
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
по: J. Roger, и др.
Опубликовано: (2024-02-01) -
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
по: E. Sánchez-García, и др.
Опубликовано: (2022-03-01) -
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
по: Jon Alvarez Justo, и др.
Опубликовано: (2025-01-01)