Semantic segmentation of methane plumes with hyperspectral machine learning models
Methane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated w...
Những tác giả chính: | Růžička, V, Mateo-Garcia, G, Gómez-Chova, L, Vaughan, A, Guanter, L, Markham, A |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Springer Nature
2023
|
Những quyển sách tương tự
-
Semantic segmentation of methane plumes with hyperspectral machine learning models
Bằng: Vít Růžička, et al.
Được phát hành: (2023-11-01) -
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
Bằng: A. Vaughan, et al.
Được phát hành: (2024-05-01) -
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
Bằng: J. Roger, et al.
Được phát hành: (2024-02-01) -
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
Bằng: E. Sánchez-García, et al.
Được phát hành: (2022-03-01) -
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
Bằng: Jon Alvarez Justo, et al.
Được phát hành: (2025-01-01)