Group enumeration

<p>The thesis centres around two problems in the enumeration of <em>p</em>-groups. Define <em>f</em><sub>φ</sub>(<em>p<sup>m</sup></em>) to be the number of (isomorphism classes of) groups of order <em>p<sup>m</sup>...

Full description

Bibliographic Details
Main Authors: Blackburn, S, Simon Robert Blackburn
Other Authors: Neumann, P
Format: Thesis
Language:English
Published: 1992
Subjects:
_version_ 1797094866754207744
author Blackburn, S
Simon Robert Blackburn
author2 Neumann, P
author_facet Neumann, P
Blackburn, S
Simon Robert Blackburn
author_sort Blackburn, S
collection OXFORD
description <p>The thesis centres around two problems in the enumeration of <em>p</em>-groups. Define <em>f</em><sub>φ</sub>(<em>p<sup>m</sup></em>) to be the number of (isomorphism classes of) groups of order <em>p<sup>m</sup></em> in an isoclinism class φ. We give bounds for this function as φ is fixed and <em>m</em> varies and as <em>m</em> is fixed and φ varies. In the course of obtaining these bounds, we prove the following result. We say a group is <em>reduced</em> if it has no non-trivial abelian direct factors. Then the rank of the centre <em>Z</em>(<em>P</em>) and the rank of the derived factor group <em>P|P'</em> of a reduced <em>p</em>-group <em>P</em> are bounded in terms of the orders of <em>P|Z</em>(<em>P</em>)<em>P'</em> and <em>P'</em>∩<em>Z</em>(<em>P</em>)</p>. <p>A long standing conjecture of Charles C. Sims states that the number of groups of order <em>p<sup>m</sup></em> is<br/> <em>p</em><sup><sup>2</sup>andfrasl;<sub>27</sub><em>m</em><sup>3</sup>+<em>O</em>(<em>m</em><sup>2</sup>)</sup>. (1)</p> <p>We show that the number of groups of nilpotency class at most 3 and order <em>p<sup>m</sup></em> satisfies (1). We prove a similar result concerning the number of graded Lie rings of order <em>p<sup>m</sup></em> generated by their first grading.</p>
first_indexed 2024-03-07T04:19:53Z
format Thesis
id oxford-uuid:caac5ed0-44e3-4bec-a97e-59e11ea268af
institution University of Oxford
language English
last_indexed 2024-03-07T04:19:53Z
publishDate 1992
record_format dspace
spelling oxford-uuid:caac5ed0-44e3-4bec-a97e-59e11ea268af2022-03-27T07:09:01ZGroup enumerationThesishttp://purl.org/coar/resource_type/c_db06uuid:caac5ed0-44e3-4bec-a97e-59e11ea268afGroup theoryAbelian p-groupsEnglishPolonsky Theses Digitisation Project1992Blackburn, SSimon Robert BlackburnNeumann, PNeumann, P<p>The thesis centres around two problems in the enumeration of <em>p</em>-groups. Define <em>f</em><sub>φ</sub>(<em>p<sup>m</sup></em>) to be the number of (isomorphism classes of) groups of order <em>p<sup>m</sup></em> in an isoclinism class φ. We give bounds for this function as φ is fixed and <em>m</em> varies and as <em>m</em> is fixed and φ varies. In the course of obtaining these bounds, we prove the following result. We say a group is <em>reduced</em> if it has no non-trivial abelian direct factors. Then the rank of the centre <em>Z</em>(<em>P</em>) and the rank of the derived factor group <em>P|P'</em> of a reduced <em>p</em>-group <em>P</em> are bounded in terms of the orders of <em>P|Z</em>(<em>P</em>)<em>P'</em> and <em>P'</em>∩<em>Z</em>(<em>P</em>)</p>. <p>A long standing conjecture of Charles C. Sims states that the number of groups of order <em>p<sup>m</sup></em> is<br/> <em>p</em><sup><sup>2</sup>andfrasl;<sub>27</sub><em>m</em><sup>3</sup>+<em>O</em>(<em>m</em><sup>2</sup>)</sup>. (1)</p> <p>We show that the number of groups of nilpotency class at most 3 and order <em>p<sup>m</sup></em> satisfies (1). We prove a similar result concerning the number of graded Lie rings of order <em>p<sup>m</sup></em> generated by their first grading.</p>
spellingShingle Group theory
Abelian p-groups
Blackburn, S
Simon Robert Blackburn
Group enumeration
title Group enumeration
title_full Group enumeration
title_fullStr Group enumeration
title_full_unstemmed Group enumeration
title_short Group enumeration
title_sort group enumeration
topic Group theory
Abelian p-groups
work_keys_str_mv AT blackburns groupenumeration
AT simonrobertblackburn groupenumeration