Sum rules & Tauberian theorems at finite temperature
We study CFTs at finite temperature and derive explicit sum rules for one-point functions of operators by imposing the KMS condition and we explicitly estimate one-point functions for light operators. Turning to heavy operators we employ Tauberian theorems and compute the asymptotic OPE density for...
主要な著者: | Marchetto, E, Miscioscia, A, Pomoni, E |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer
2024
|
類似資料
-
Sum rules & Tauberian theorems at finite temperature
著者:: Enrico Marchetto, 等
出版事項: (2024-09-01) -
Broken (super) conformal Ward identities at finite temperature
著者:: Enrico Marchetto, 等
出版事項: (2023-12-01) -
Tauberian remainder theorems /
著者:: 201372 Ganelius, Tord H.
出版事項: (1971) -
Conformal line defects at finite temperature
著者:: Julien Barrat, Bartomeu Fiol, Enrico Marchetto, Alessio Miscioscia, Elli Pomoni
出版事項: (2025-01-01) -
Ingham Tauberian theorem with an estimate for the error term
著者:: E. P. Balanzario, 等
出版事項: (2003-01-01)