Stochastic order characterization of uniform integrability and tightness
We show that a family of random variables is uniformly integrable if and only if it is stochastically bounded in the increasing convex order by an integrable random variable. This result is complemented by proving analogous statements for the strong stochastic order and for power-integrable dominati...
Hoofdauteurs: | Leskelä, L, Vihola, M |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
2013
|
Gelijkaardige items
-
Markovian stochastic approximation with expanding projections
door: Andrieu, C, et al.
Gepubliceerd in: (2014) -
Stochastic Order for a Multivariate Uniform Distributions Family
door: Luigi-Ionut Catana, et al.
Gepubliceerd in: (2020-08-01) -
Tight Euler tours in uniform hypergraphs - computational aspects
door: Zbigniew Lonc, et al.
Gepubliceerd in: (2017-09-01) -
Tight Bounds on the Convergence of Noisy Random Circuits to the Uniform Distribution
door: Abhinav Deshpande, et al.
Gepubliceerd in: (2022-12-01) -
Ordered sets as uniformities
door: Hušek Miroslav
Gepubliceerd in: (2018-03-01)