Human induced pluripotent stem cell-derived versus adult cardiomyocytes: an in silico electrophysiological study on effects of ionic current block

<p><strong>Background and Purpose</strong> Two new technologies are likely to revolutionize cardiac safety and drug development: in vitro experiments on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and in silico human adult ventricular cardiomyocyte (hAdul...

Full description

Bibliographic Details
Main Authors: Paci, M, Hyttinen, J, Rodriguez, B, Severi, S
Format: Journal article
Language:English
Published: Wiley 2015
Description
Summary:<p><strong>Background and Purpose</strong> Two new technologies are likely to revolutionize cardiac safety and drug development: in vitro experiments on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and in silico human adult ventricular cardiomyocyte (hAdultV-CM) models. Their combination was recently proposed as a potential replacement for the present hERG-based QT study for pharmacological safety assessments. Here, we systematically compared in silico the effects of selective ionic current block on hiPSC-CM and hAdultV-CM action potentials (APs), to identify similarities/differences and to illustrate the potential of computational models as supportive tools for evaluating new in vitro technologies.</p> <p><strong>Experimental Approach</strong> In silico AP models of ventricular-like and atrial-like hiPSC-CMs and hAdultV-CM were used to simulate the main effects of four degrees of block of the main cardiac transmembrane currents.</p> <p><strong>Key Results</strong> Qualitatively, hiPSC-CM and hAdultV-CM APs showed similar responses to current block, consistent with results from experiments. However, quantitatively, hiPSC-CMs were more sensitive to block of (i) L-type Ca2+ currents due to the overexpression of the Na+/Ca2+ exchanger (leading to shorter APs) and (ii) the inward rectifier K+ current due to reduced repolarization reserve (inducing diastolic potential depolarization and repolarization failure).</p> <p><strong>Conclusions and Implications</strong> In silico hiPSC-CMs and hAdultV-CMs exhibit a similar response to selective current blocks. However, overall hiPSC-CMs show greater sensitivity to block, which may facilitate in vitro identification of drug-induced effects. Extrapolation of drug effects from hiPSC-CM to hAdultV-CM and pro-arrhythmic risk assessment can be facilitated by in silico predictions using biophysically-based computational models.</p>