DeepAoANet: Learning angle of arrival from software defined radios with deep neural networks
Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal r...
Үндсэн зохиолчид: | Dai, Z, He, Y, Tran, V, Trigoni, N, Markham, A |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
IEEE
2022
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
The angle of arrival estimation of frequency-hopping cooperative object based on software-defined radio
-н: Rustamaji, зэрэг
Хэвлэсэн: (2024-04-01) -
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
-н: Jing Xu, зэрэг
Хэвлэсэн: (2021-05-01) -
Autonomous software-defined radio receivers for deep space applications /
-н: Hamkins, Jon, 1968-, зэрэг
Хэвлэсэн: (2006) -
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
-н: Mingmin Bi, зэрэг
Хэвлэсэн: (2023-04-01) -
DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio
-н: Arhum Ahmad, зэрэг
Хэвлэсэн: (2022-01-01)