DeepAoANet: Learning angle of arrival from software defined radios with deep neural networks
Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal r...
Hlavní autoři: | Dai, Z, He, Y, Tran, V, Trigoni, N, Markham, A |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
IEEE
2022
|
Podobné jednotky
-
The angle of arrival estimation of frequency-hopping cooperative object based on software-defined radio
Autor: Rustamaji, a další
Vydáno: (2024-04-01) -
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
Autor: Jing Xu, a další
Vydáno: (2021-05-01) -
Autonomous software-defined radio receivers for deep space applications /
Autor: Hamkins, Jon, 1968-, a další
Vydáno: (2006) -
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
Autor: Mingmin Bi, a další
Vydáno: (2023-04-01) -
DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio
Autor: Arhum Ahmad, a další
Vydáno: (2022-01-01)