DeepAoANet: Learning angle of arrival from software defined radios with deep neural networks
Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal r...
Auteurs principaux: | Dai, Z, He, Y, Tran, V, Trigoni, N, Markham, A |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
IEEE
2022
|
Documents similaires
-
The angle of arrival estimation of frequency-hopping cooperative object based on software-defined radio
par: Rustamaji, et autres
Publié: (2024-04-01) -
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
par: Jing Xu, et autres
Publié: (2021-05-01) -
Autonomous software-defined radio receivers for deep space applications /
par: Hamkins, Jon, 1968-, et autres
Publié: (2006) -
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
par: Mingmin Bi, et autres
Publié: (2023-04-01) -
DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio
par: Arhum Ahmad, et autres
Publié: (2022-01-01)