DeepAoANet: Learning angle of arrival from software defined radios with deep neural networks
Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal r...
Հիմնական հեղինակներ: | Dai, Z, He, Y, Tran, V, Trigoni, N, Markham, A |
---|---|
Ձևաչափ: | Journal article |
Լեզու: | English |
Հրապարակվել է: |
IEEE
2022
|
Նմանատիպ նյութեր
-
The angle of arrival estimation of frequency-hopping cooperative object based on software-defined radio
: Rustamaji, և այլն
Հրապարակվել է: (2024-04-01) -
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
: Jing Xu, և այլն
Հրապարակվել է: (2021-05-01) -
Autonomous software-defined radio receivers for deep space applications /
: Hamkins, Jon, 1968-, և այլն
Հրապարակվել է: (2006) -
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
: Mingmin Bi, և այլն
Հրապարակվել է: (2023-04-01) -
DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio
: Arhum Ahmad, և այլն
Հրապարակվել է: (2022-01-01)