DeepAoANet: Learning angle of arrival from software defined radios with deep neural networks
Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal r...
主要な著者: | Dai, Z, He, Y, Tran, V, Trigoni, N, Markham, A |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
IEEE
2022
|
類似資料
-
The angle of arrival estimation of frequency-hopping cooperative object based on software-defined radio
著者:: Rustamaji, 等
出版事項: (2024-04-01) -
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
著者:: Jing Xu, 等
出版事項: (2021-05-01) -
Autonomous software-defined radio receivers for deep space applications /
著者:: Hamkins, Jon, 1968-, 等
出版事項: (2006) -
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
著者:: Mingmin Bi, 等
出版事項: (2023-04-01) -
DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio
著者:: Arhum Ahmad, 等
出版事項: (2022-01-01)