DeepAoANet: Learning angle of arrival from software defined radios with deep neural networks
Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal r...
Главные авторы: | Dai, Z, He, Y, Tran, V, Trigoni, N, Markham, A |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
IEEE
2022
|
Схожие документы
-
The angle of arrival estimation of frequency-hopping cooperative object based on software-defined radio
по: Rustamaji, и др.
Опубликовано: (2024-04-01) -
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
по: Jing Xu, и др.
Опубликовано: (2021-05-01) -
Autonomous software-defined radio receivers for deep space applications /
по: Hamkins, Jon, 1968-, и др.
Опубликовано: (2006) -
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
по: Mingmin Bi, и др.
Опубликовано: (2023-04-01) -
DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio
по: Arhum Ahmad, и др.
Опубликовано: (2022-01-01)