An iterative technique for bounding derivatives of solutions of Stein equations
We introduce a simple iterative technique for bounding derivatives of solutions of Stein equations Lf=h−Eh(Z), where L is a linear differential operator and Z is the limit random variable. Given bounds on just the solutions or certain lower order derivatives of the solution, the technique allows one...
Principais autores: | Dӧbler, C, Gaunt, RE, Vollmer, SJ |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Institute of Mathematical Statistics and Bernoulli Society
2017
|
Registros relacionados
-
Rates of convergence in normal approximation under moment conditions via new bounds on solutions of the Stein equation
por: Gaunt, R
Publicado em: (2014) -
Bounds for the chi-square approximation of Friedman's statistic by Stein's method
por: Gaunt, R, et al.
Publicado em: (2023) -
Variance-Gamma approximation via Stein's method
por: Gaunt, R
Publicado em: (2014) -
Stein's method for functions of multivariate normal random variables
por: Gaunt, R
Publicado em: (2015) -
Rates of convergence of variance-gamma approximations via Stein's method
por: Gaunt, R
Publicado em: (2013)