Selective sensor fusion for neural visual-inertial odometry
Deep learning approaches for Visual-Inertial Odometry (VIO) have proven successful, but they rarely focus on incorporating robust fusion strategies for dealing with imperfect input sensory data. We propose a novel end-to-end selective sensor fusion framework for monocular VIO, which fuses monocular...
Huvudupphovsmän: | Chen, C, Rosa, S, Miao, Y, Lu, CX, Wu, W, Markham, A, Trigoni, N |
---|---|
Materialtyp: | Conference item |
Språk: | English |
Publicerad: |
IEEE
2019
|
Liknande verk
-
Deep neural network based inertial odometry using low-cost inertial measurement units
av: Chen, C, et al.
Publicerad: (2019) -
VINet: Visual-inertial odometry as a sequence-to-sequence learning problem
av: Clark, R, et al.
Publicerad: (2017) -
IONet: Learning to Cure the Curse of Drift in Inertial Odometry
av: Chen, C, et al.
Publicerad: (2018) -
Visual inertial odometry and lidar inertial odometry for mobile robot
av: Henawy, John Farid Nasry
Publicerad: (2021) -
MotionTransformer: Transferring neural inertial tracking between domains
av: Chen, C, et al.
Publicerad: (2019)