Simulating Jupiter’s weather layer. Part I: Jet spin-up in a dry atmosphere

We investigate the dynamics of Jupiter's upper troposphere and lower stratosphere using a General Circulation Model that includes two-stream radiation and optional heating from below. Based on the MITgcm dynamical core, this is a new generation of the Oxford Jupiter model [Zuchowski, L.C. et al...

Full description

Bibliographic Details
Main Authors: Young, R, Read, P, Wang, Y
Format: Journal article
Language:English
Published: Elsevier 2018
Description
Summary:We investigate the dynamics of Jupiter's upper troposphere and lower stratosphere using a General Circulation Model that includes two-stream radiation and optional heating from below. Based on the MITgcm dynamical core, this is a new generation of the Oxford Jupiter model [Zuchowski, L.C. et al., 2009. Plan. Space Sci., 57, 1525--1537, doi:10.1016/j.pss.2009.05.008]. We simulate Jupiter's atmosphere at up to 0.7 degree horizontal resolution with 33 vertical levels down to a pressure of 18 bar, in configurations with and without a 5.7 W/m2 interior heat flux. Simulations ran for 130000-150000 days to allow the deep atmosphere to come into radiative equilibrium. Baroclinic instability generates alternating, eddy-driven, midlatitude jets in both cases. With interior heating the zonal jets migrate towards the equator and become barotropically unstable. This generates Rossby waves that radiate away from the equator, depositing westerly momentum there via eddy angular momentum flux convergence and spinning up a super-rotating 20 m/s equatorial jet throughout the troposphere. There are 30-35 zonal jets with latitudinal separation comparable with the real planet, and there is strong eddy activity throughout. Without interior heating the jets do not migrate and a divergent eddy angular momentum flux at the equator spins up a broad, 50 m/s sub-rotating equatorial jet with weak eddy activity at low latitudes.