15 years of Adjoint Algorithmic Differentiation (AAD) in finance

Following the seminal ‘Smoking Adjoint’ paper by Giles and Glasserman [Smoking adjoints: Fast monte carlo greeks. Risk, 2006, <strong>19</strong>, 88–92], the development of Adjoint Algorithmic Differentiation (AAD) has revolutionized the way risk is computed in the financial industry. I...

全面介紹

書目詳細資料
Main Authors: Capriotti, L, Giles, M
格式: Journal article
語言:English
出版: Taylor & Francis 2024
實物特徵
總結:Following the seminal ‘Smoking Adjoint’ paper by Giles and Glasserman [Smoking adjoints: Fast monte carlo greeks. Risk, 2006, <strong>19</strong>, 88–92], the development of Adjoint Algorithmic Differentiation (AAD) has revolutionized the way risk is computed in the financial industry. In this paper, we provide a tutorial of this technique, illustrate how it is immediately applicable for Monte Carlo and Partial Differential Equations applications, the two main numerical techniques used for option pricing, and review the most significant literature in quantitative finance of the past fifteen years.