Invariant causal prediction for block MDPs
Generalization across environments is critical to the successful application of reinforcement learning (RL) algorithms to real-world challenges. In this work we propose a method for learning state abstractions which generalize to novel observation distributions in the multi-environment RL setting. W...
Main Authors: | Zhang, A, Lyle, C, Sodhani, S, Filos, A, Kwiatkowska, M, Pineau, J, Gal, Y, Precup, D |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado: |
Proceedings of Machine Learning Research
2020
|
Títulos similares
-
Markov decision processes in artificial intelligence : MDPs, beyond MDPs and applications /
por: Sigaud, Olivier, et al.
Publicado: (2010) -
Transience in countable MDPs
por: Kiefer, SM, et al.
Publicado: (2021) -
Parity objectives in countable MDPs
por: Kiefer, S, et al.
Publicado: (2017) -
Büchi objectives in countable MDPs
por: Kiefer, S, et al.
Publicado: (2019) -
Social Interactions as Recursive MDPs
por: Tejwani, Ravi, et al.
Publicado: (2022)