Invariant causal prediction for block MDPs
Generalization across environments is critical to the successful application of reinforcement learning (RL) algorithms to real-world challenges. In this work we propose a method for learning state abstractions which generalize to novel observation distributions in the multi-environment RL setting. W...
Autori principali: | Zhang, A, Lyle, C, Sodhani, S, Filos, A, Kwiatkowska, M, Pineau, J, Gal, Y, Precup, D |
---|---|
Natura: | Conference item |
Lingua: | English |
Pubblicazione: |
Proceedings of Machine Learning Research
2020
|
Documenti analoghi
Documenti analoghi
-
Markov decision processes in artificial intelligence : MDPs, beyond MDPs and applications /
di: Sigaud, Olivier, et al.
Pubblicazione: (2010) -
Transience in countable MDPs
di: Kiefer, SM, et al.
Pubblicazione: (2021) -
Parity objectives in countable MDPs
di: Kiefer, S, et al.
Pubblicazione: (2017) -
Büchi objectives in countable MDPs
di: Kiefer, S, et al.
Pubblicazione: (2019) -
Social Interactions as Recursive MDPs
di: Tejwani, Ravi, et al.
Pubblicazione: (2022)