Invariant causal prediction for block MDPs
Generalization across environments is critical to the successful application of reinforcement learning (RL) algorithms to real-world challenges. In this work we propose a method for learning state abstractions which generalize to novel observation distributions in the multi-environment RL setting. W...
Váldodahkkit: | Zhang, A, Lyle, C, Sodhani, S, Filos, A, Kwiatkowska, M, Pineau, J, Gal, Y, Precup, D |
---|---|
Materiálatiipa: | Conference item |
Giella: | English |
Almmustuhtton: |
Proceedings of Machine Learning Research
2020
|
Geahča maid
-
Markov decision processes in artificial intelligence : MDPs, beyond MDPs and applications /
Dahkki: Sigaud, Olivier, et al.
Almmustuhtton: (2010) -
Transience in countable MDPs
Dahkki: Kiefer, SM, et al.
Almmustuhtton: (2021) -
Parity objectives in countable MDPs
Dahkki: Kiefer, S, et al.
Almmustuhtton: (2017) -
Büchi objectives in countable MDPs
Dahkki: Kiefer, S, et al.
Almmustuhtton: (2019) -
Social Interactions as Recursive MDPs
Dahkki: Tejwani, Ravi, et al.
Almmustuhtton: (2022)