Summary: | We have examined the influence of mechanical surface finishing on the development of residual stresses, and on the subsequent formation of stress corrosion cracks, in 316Ti austenitic stainless steel after exposure to boiling magnesium chloride. The surface residual stresses of as-received plate, prior to machining, were found to be biaxial and compressive. However, abrasive grinding produced significant compressive stresses in the machining direction but much lower perpendicular stresses. On the other hand, milling produced high biaxial tensile stresses (approaching the ultimate tensile strength, UTS, of the material), which were found to be relatively insensitive to cut depth but to vary as a function of feed rate. On the milled surfaces a distinctive pattern of stress corrosion cracking was evident with longer primary cracks nucleating along the milling direction and secondary, shorter, cracks nucleating perpendicularly. As the surface tensile stress was lower perpendicular to the milling direction, we postulate that the nucleation of primary cracks parallel to machining must be driven by the surface profile after machining (and associated micro-stresses) as much as by the macroscopic residual stresses.
|