Understanding image representations by measuring their equivariance and equivalence
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural Networks (CNN), our theoretical understanding of them remains limited. Aiming at filling this gap, we investigate three key mathematical properties of representations: equivariance,...
Κύριοι συγγραφείς: | Lenc, K, Vedaldi, A |
---|---|
Μορφή: | Conference item |
Έκδοση: |
IEEE
2015
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Understanding Image Representations by Measuring Their Equivariance and Equivalence
ανά: Lenc, K, κ.ά.
Έκδοση: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
ανά: Thewlis, J, κ.ά.
Έκδοση: (2017) -
Equivariant quantum cohomology and the geometric Satake equivalence
ανά: Viscardi, Michael
Έκδοση: (2016) -
Learning equivariant structured output SVM regressors
ανά: Vedaldi, A, κ.ά.
Έκδοση: (2012) -
Induction equivalence for equivariant D-modules on rigid analytic spaces
ανά: Ardakov, K
Έκδοση: (2023)