Understanding image representations by measuring their equivariance and equivalence
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural Networks (CNN), our theoretical understanding of them remains limited. Aiming at filling this gap, we investigate three key mathematical properties of representations: equivariance,...
Hlavní autoři: | Lenc, K, Vedaldi, A |
---|---|
Médium: | Conference item |
Vydáno: |
IEEE
2015
|
Podobné jednotky
-
Understanding Image Representations by Measuring Their Equivariance and Equivalence
Autor: Lenc, K, a další
Vydáno: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
Autor: Thewlis, J, a další
Vydáno: (2017) -
Equivariant quantum cohomology and the geometric Satake equivalence
Autor: Viscardi, Michael
Vydáno: (2016) -
Learning equivariant structured output SVM regressors
Autor: Vedaldi, A, a další
Vydáno: (2012) -
Induction equivalence for equivariant D-modules on rigid analytic spaces
Autor: Ardakov, K
Vydáno: (2023)