Understanding image representations by measuring their equivariance and equivalence
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural Networks (CNN), our theoretical understanding of them remains limited. Aiming at filling this gap, we investigate three key mathematical properties of representations: equivariance,...
Hauptverfasser: | Lenc, K, Vedaldi, A |
---|---|
Format: | Conference item |
Veröffentlicht: |
IEEE
2015
|
Ähnliche Einträge
Ähnliche Einträge
-
Understanding Image Representations by Measuring Their Equivariance and Equivalence
von: Lenc, K, et al.
Veröffentlicht: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
von: Thewlis, J, et al.
Veröffentlicht: (2017) -
Equivariant quantum cohomology and the geometric Satake equivalence
von: Viscardi, Michael
Veröffentlicht: (2016) -
Learning equivariant structured output SVM regressors
von: Vedaldi, A, et al.
Veröffentlicht: (2012) -
Induction equivalence for equivariant D-modules on rigid analytic spaces
von: Ardakov, K
Veröffentlicht: (2023)