Understanding image representations by measuring their equivariance and equivalence
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural Networks (CNN), our theoretical understanding of them remains limited. Aiming at filling this gap, we investigate three key mathematical properties of representations: equivariance,...
Huvudupphovsmän: | Lenc, K, Vedaldi, A |
---|---|
Materialtyp: | Conference item |
Publicerad: |
IEEE
2015
|
Liknande verk
Liknande verk
-
Understanding Image Representations by Measuring Their Equivariance and Equivalence
av: Lenc, K, et al.
Publicerad: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
av: Thewlis, J, et al.
Publicerad: (2017) -
Equivariant quantum cohomology and the geometric Satake equivalence
av: Viscardi, Michael
Publicerad: (2016) -
Learning equivariant structured output SVM regressors
av: Vedaldi, A, et al.
Publicerad: (2012) -
Induction equivalence for equivariant D-modules on rigid analytic spaces
av: Ardakov, K
Publicerad: (2023)