Gromov–Witten gauge theory
We introduce a modular completion of the stack of maps from stable marked curves to the quotient stack [pt/C^x], and use this stack to construct some gauge-theoretic analogues of the Gromov-Witten invariants. We also indicate the generalization of these invariants to the quotient stacks [X=C^x], whe...
主要な著者: | Frenkel, E, Teleman, C, Tolland, A |
---|---|
フォーマット: | Journal article |
出版事項: |
Elsevier
2015
|
類似資料
-
On Mathieu moonshine and Gromov-Witten invariants
著者:: Andreas Banlaki, 等
出版事項: (2020-02-01) -
Flag Gromov-Witten invariants via crystals
著者:: Jennifer Morse, 等
出版事項: (2014-01-01) -
Floer theory for negative line bundles via Gromov-Witten invariants
著者:: Ritter, A
出版事項: (2014) -
Gromov-Witten/Pairs correspondence for the quintic 3-fold
著者:: Pandharipande, R., 等
出版事項: (2018) -
On the modularity of certain functions from the Gromov–Witten theory of elliptic orbifolds
著者:: Kathrin Bringmann, 等
出版事項: (2015-01-01)