BiCoS: a bi-level co-segmentation method for image classification
The objective of this paper is the unsupervised segmentation of image training sets into foreground and background in order to improve image classification performance. To this end we introduce a new scalable, alternation-based algorithm for co-segmentation, BiCoS, which is simpler than many of its...
Main Authors: | , , |
---|---|
Format: | Conference item |
Language: | English |
Published: |
IEEE
2012
|
Summary: | The objective of this paper is the unsupervised segmentation of image training sets into foreground and background in order to improve image classification performance. To this end we introduce a new scalable, alternation-based algorithm for co-segmentation, BiCoS, which is simpler than many of its predecessors, and yet has superior performance on standard benchmark image datasets. |
---|