Decidability of graph neural networks via logical characterizations

We present results concerning the expressiveness and decidability of a popular graph learning formalism, graph neural networks (GNNs), exploiting connections with logic. We use a family of recently-discovered decidable logics involving ``Presburger quantifiers''. We show how to use the...

詳細記述

書誌詳細
主要な著者: Benedikt, M, Lu, C-H, Motik, B, Tan, T
フォーマット: Conference item
言語:English
出版事項: Lipics 2024