Decidability of graph neural networks via logical characterizations

We present results concerning the expressiveness and decidability of a popular graph learning formalism, graph neural networks (GNNs), exploiting connections with logic. We use a family of recently-discovered decidable logics involving ``Presburger quantifiers''. We show how to use the...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Benedikt, M, Lu, C-H, Motik, B, Tan, T
Formaat: Conference item
Taal:English
Gepubliceerd in: Lipics 2024