Bayesian Optimization for Probabilistic Programs
We outline a general purpose framework for black-box marginal maximum a pos- teriori estimation of probabilistic program variables using Bayesian optimization with Gaussian processes. We introduce the concept of an optimization query, whereby a probabilistic program returns an infinite lazy sequence...
Հիմնական հեղինակներ: | , , , , |
---|---|
Ձևաչափ: | Conference item |
Հրապարակվել է: |
Neural Information Processing Systems Foundation
2016
|
Ամփոփում: | We outline a general purpose framework for black-box marginal maximum a pos- teriori estimation of probabilistic program variables using Bayesian optimization with Gaussian processes. We introduce the concept of an optimization query, whereby a probabilistic program returns an infinite lazy sequence of increasingly optimal estimates, and explain how a general purpose program transformation would allow the evidence of any probabilistic program, and therefore any graphical model, to be optimized with respect to an arbitrary subset of its variables. |
---|