Bayesian Optimization for Probabilistic Programs

We outline a general purpose framework for black-box marginal maximum a pos- teriori estimation of probabilistic program variables using Bayesian optimization with Gaussian processes. We introduce the concept of an optimization query, whereby a probabilistic program returns an infinite lazy sequence...

وصف كامل

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Rainforth, T, Le, T, van de Meent, J, Osborne, M, Wood, F
التنسيق: Conference item
منشور في: Neural Information Processing Systems Foundation 2016
_version_ 1826297585351000064
author Rainforth, T
Le, T
van de Meent, J
Osborne, M
Wood, F
author_facet Rainforth, T
Le, T
van de Meent, J
Osborne, M
Wood, F
author_sort Rainforth, T
collection OXFORD
description We outline a general purpose framework for black-box marginal maximum a pos- teriori estimation of probabilistic program variables using Bayesian optimization with Gaussian processes. We introduce the concept of an optimization query, whereby a probabilistic program returns an infinite lazy sequence of increasingly optimal estimates, and explain how a general purpose program transformation would allow the evidence of any probabilistic program, and therefore any graphical model, to be optimized with respect to an arbitrary subset of its variables.
first_indexed 2024-03-07T04:33:53Z
format Conference item
id oxford-uuid:cf44b369-52b5-40fc-bc3d-b4e3f69bf86c
institution University of Oxford
last_indexed 2024-03-07T04:33:53Z
publishDate 2016
publisher Neural Information Processing Systems Foundation
record_format dspace
spelling oxford-uuid:cf44b369-52b5-40fc-bc3d-b4e3f69bf86c2022-03-27T07:41:16ZBayesian Optimization for Probabilistic ProgramsConference itemhttp://purl.org/coar/resource_type/c_5794uuid:cf44b369-52b5-40fc-bc3d-b4e3f69bf86cSymplectic Elements at OxfordNeural Information Processing Systems Foundation2016Rainforth, TLe, Tvan de Meent, JOsborne, MWood, FWe outline a general purpose framework for black-box marginal maximum a pos- teriori estimation of probabilistic program variables using Bayesian optimization with Gaussian processes. We introduce the concept of an optimization query, whereby a probabilistic program returns an infinite lazy sequence of increasingly optimal estimates, and explain how a general purpose program transformation would allow the evidence of any probabilistic program, and therefore any graphical model, to be optimized with respect to an arbitrary subset of its variables.
spellingShingle Rainforth, T
Le, T
van de Meent, J
Osborne, M
Wood, F
Bayesian Optimization for Probabilistic Programs
title Bayesian Optimization for Probabilistic Programs
title_full Bayesian Optimization for Probabilistic Programs
title_fullStr Bayesian Optimization for Probabilistic Programs
title_full_unstemmed Bayesian Optimization for Probabilistic Programs
title_short Bayesian Optimization for Probabilistic Programs
title_sort bayesian optimization for probabilistic programs
work_keys_str_mv AT rainfortht bayesianoptimizationforprobabilisticprograms
AT let bayesianoptimizationforprobabilisticprograms
AT vandemeentj bayesianoptimizationforprobabilisticprograms
AT osbornem bayesianoptimizationforprobabilisticprograms
AT woodf bayesianoptimizationforprobabilisticprograms