Quantifiers on languages and codensity monads

This paper contributes to the techniques of topoalgebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a related Reute...

Cijeli opis

Bibliografski detalji
Glavni autori: Gehrke, M, Petrişan, D, Reggio, L
Format: Conference item
Jezik:English
Izdano: IEEE 2017
_version_ 1826297592971001856
author Gehrke, M
Petrişan, D
Reggio, L
author_facet Gehrke, M
Petrişan, D
Reggio, L
author_sort Gehrke, M
collection OXFORD
description This paper contributes to the techniques of topoalgebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a related Reutenauer-type theorem. Our main tools are codensity monads and duality theory. Our construction yields, in particular, a new characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.
first_indexed 2024-03-07T04:34:00Z
format Conference item
id oxford-uuid:cf51ae11-2d4c-493c-ab9c-d1fecf65e2bd
institution University of Oxford
language English
last_indexed 2024-03-07T04:34:00Z
publishDate 2017
publisher IEEE
record_format dspace
spelling oxford-uuid:cf51ae11-2d4c-493c-ab9c-d1fecf65e2bd2022-03-27T07:41:36ZQuantifiers on languages and codensity monadsConference itemhttp://purl.org/coar/resource_type/c_5794uuid:cf51ae11-2d4c-493c-ab9c-d1fecf65e2bdEnglishSymplectic ElementsIEEE2017Gehrke, MPetrişan, DReggio, LThis paper contributes to the techniques of topoalgebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a related Reutenauer-type theorem. Our main tools are codensity monads and duality theory. Our construction yields, in particular, a new characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.
spellingShingle Gehrke, M
Petrişan, D
Reggio, L
Quantifiers on languages and codensity monads
title Quantifiers on languages and codensity monads
title_full Quantifiers on languages and codensity monads
title_fullStr Quantifiers on languages and codensity monads
title_full_unstemmed Quantifiers on languages and codensity monads
title_short Quantifiers on languages and codensity monads
title_sort quantifiers on languages and codensity monads
work_keys_str_mv AT gehrkem quantifiersonlanguagesandcodensitymonads
AT petrisand quantifiersonlanguagesandcodensitymonads
AT reggiol quantifiersonlanguagesandcodensitymonads