A fractional variational approach for modelling dissipative mechanical systems: continuous and discrete settings

Employing a phase space which includes the (Riemann-Liouville) fractional derivative of curves evolving on real space, we develop a restricted variational principle for Lagrangian systems yielding the so-called restricted fractional Euler-Lagrange equations (both in the continuous and discrete setti...

Popoln opis

Bibliografske podrobnosti
Main Authors: Jimenez, F, Ober-Blobaum, S
Format: Journal article
Jezik:English
Izdano: Elsevier 2018
Opis
Izvleček:Employing a phase space which includes the (Riemann-Liouville) fractional derivative of curves evolving on real space, we develop a restricted variational principle for Lagrangian systems yielding the so-called restricted fractional Euler-Lagrange equations (both in the continuous and discrete settings), which, as we show, are invariant under linear change of variables. This principle relies on a particular restriction upon the admissible variation of the curves. In the case of the half-derivative and mechanical Lagrangians, i.e. kinetic minus potential energy, the restricted fractional Euler-Lagrange equations model a dissipative system in both directions of time, summing up to a set of equations that is invariant under time reversal. Finally, we show that the discrete equations are a meaningful discretisation of the continuous ones.