Modular Ax-Lindemann-Weierstrass with Derivatives
In a recent paper I established an analogue of the Lindemann- Weierstrass part of Ax-Schanuel for the elliptic modular function. Here I extend this to include its first and second derivatives. A generalization is given that includes exponential and Weierstrass elliptic functions as well. © 2013 by U...
主要作者: | Pila, J |
---|---|
格式: | Journal article |
語言: | English |
出版: |
2013
|
相似書籍
-
Ax-Lindemann for \mathcal{A}_g
由: Pila, J, et al.
出版: (2012) -
Lindemann melting criterion in two dimensions
由: Sergey A. Khrapak
出版: (2020-02-01) -
Properties of the Lindemann mechanism in phase space
由: M. S. Calder, et al.
出版: (2011-02-01) -
Ax-Schanuel for the j-function
由: Pila, J, et al.
出版: (2016) -
Ax-Schanuel for Shimura varieties
由: Mok, N, et al.
出版: (2019)