SUPERVISED AND UNSUPERVISED LEARNING IN RADIAL BASIS FUNCTION CLASSIFIERS
The paper considers a number of strategies for training radial basis function (RBF) classifiers. A benchmark problem is constructed using ten-dimensional input patterns which have to be classified into one of three classes. The RBF networks are trained using a two-phase approach (unsupervised cluste...
Asıl Yazarlar: | Tarassenko, L, Roberts, S |
---|---|
Materyal Türü: | Conference item |
Baskı/Yayın Bilgisi: |
IEE
1994
|
Benzer Materyaller
-
Comparison of supervised and unsupervised learning classifiers for human posture recognition
Yazar:: Htike, Kyaw Kyaw, ve diğerleri
Baskı/Yayın Bilgisi: (2010) -
TEXT-INDEPENDENT SPEAKER RECOGNITION USING RADIAL BASIS FUNCTIONS
Yazar:: Fredrickson, S, ve diğerleri
Baskı/Yayın Bilgisi: (1995) -
RADIAL BASIS FUNCTION NETWORKS FOR MOBILE ROBOT LOCALIZATION
Yazar:: Townsend, N, ve diğerleri
Baskı/Yayın Bilgisi: (1994) -
Integration Of Unsupervised Clustering Algorithm And Supervised Classifier For Pattern Recognition
Yazar:: Leong, Shi Xiang
Baskı/Yayın Bilgisi: (2017) -
A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data Classifiers
Yazar:: Tommaso Zoppi, ve diğerleri
Baskı/Yayın Bilgisi: (2024-10-01)