SUPERVISED AND UNSUPERVISED LEARNING IN RADIAL BASIS FUNCTION CLASSIFIERS

The paper considers a number of strategies for training radial basis function (RBF) classifiers. A benchmark problem is constructed using ten-dimensional input patterns which have to be classified into one of three classes. The RBF networks are trained using a two-phase approach (unsupervised cluste...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Tarassenko, L, Roberts, S
Format: Conference item
Veröffentlicht: IEE 1994

Ähnliche Einträge