Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models
<p style="text-align:justify;"> In this paper we study high-dimensional correlated random effects panel data models. Our setting is useful as it allows including time invariant covariates as under random effects yet allows for correlation between covariates and unobserved heterogene...
Auteur principal: | Kock, A |
---|---|
Format: | Journal article |
Publié: |
Elsevier
2016
|
Documents similaires
-
Oracle inequalities for high dimensional vector autoregressions
par: Kock, A, et autres
Publié: (2015) -
Uniform inference in high-dimensional dynamic panel data models with approximately sparse fixed effects
par: Kock, AB, et autres
Publié: (2018) -
Oracle inequalities for convex loss functions with nonlinear targets
par: Caner, M, et autres
Publié: (2015) -
Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
par: Yijun Xiao, et autres
Publié: (2020-11-01) -
On the Oracle Properties of Bayesian Random Forest for Sparse High-Dimensional Gaussian Regression
par: Oyebayo Ridwan Olaniran, et autres
Publié: (2023-12-01)