Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models
<p style="text-align:justify;"> In this paper we study high-dimensional correlated random effects panel data models. Our setting is useful as it allows including time invariant covariates as under random effects yet allows for correlation between covariates and unobserved heterogene...
第一著者: | Kock, A |
---|---|
フォーマット: | Journal article |
出版事項: |
Elsevier
2016
|
類似資料
-
Oracle inequalities for high dimensional vector autoregressions
著者:: Kock, A, 等
出版事項: (2015) -
Uniform inference in high-dimensional dynamic panel data models with approximately sparse fixed effects
著者:: Kock, AB, 等
出版事項: (2018) -
Oracle inequalities for convex loss functions with nonlinear targets
著者:: Caner, M, 等
出版事項: (2015) -
Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
著者:: Yijun Xiao, 等
出版事項: (2020-11-01) -
On the Oracle Properties of Bayesian Random Forest for Sparse High-Dimensional Gaussian Regression
著者:: Oyebayo Ridwan Olaniran, 等
出版事項: (2023-12-01)