Limit theorems for sequential MCMC methods
Both sequential Monte Carlo (SMC) methods (a.k.a. ‘particle filters’) and sequential Markov chain Monte Carlo (sequential MCMC) methods constitute classes of algorithms which can be used to approximate expectations with respect to (a sequence of) probability distributions and their normalising const...
主要な著者: | Finke, A, Doucet, A, Johansen, AM |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Cambridge University Press
2020
|
類似資料
-
Sequential MCMC for Bayesian model selection
著者:: Andrieu, C, 等
出版事項: (1999) -
Sequential MCMC for Bayesian model selection
著者:: Andrieu, C, 等
出版事項: (1999) -
Model selection by MCMC computation
著者:: Andrieu, C, 等
出版事項: (2001) -
An introduction to MCMC for machine learning
著者:: Andrieu, C, 等
出版事項: (2003) -
An Introduction to MCMC for Machine Learning
著者:: Andrieu, C, 等
出版事項: (2003)