Studying protein-DNA interactions in vitro and in vivo using single-molecule photoswitching

<p>Protein-DNA interactions govern the fundamental cellular processes of DNA replication, transcription, repair, and chromosome organisation. Despite their importance, the detailed molecular mechanisms of protein-DNA interactions and their organisation in the cell remain elusive. The complexit...

Full description

Bibliographic Details
Main Author: Uphoff, S
Other Authors: Kapanidis, A
Format: Thesis
Language:English
Published: 2013
Subjects:
Description
Summary:<p>Protein-DNA interactions govern the fundamental cellular processes of DNA replication, transcription, repair, and chromosome organisation. Despite their importance, the detailed molecular mechanisms of protein-DNA interactions and their organisation in the cell remain elusive. The complexity of molecular biology demands new experimental concepts that resolve the structural and functional diversity of biomolecules.</p> <p>In this thesis, I describe fluorescence methods that give a direct view on protein-DNA interactions at the single-molecule level. These methods employ photoswitching to control the number of active fluorophores in the sample. Forster Resonance Energy Transfer (FRET) measures the distance between a donor and an acceptor fluorophore to report on biomolecular structure and dynamics in vitro. Because a single distance gives only limited structural information, I developed "switchable FRET" that employs photoswitching to sequentially probe multiple FRET pairs per molecule. Switchable FRET resolved two distances within static and dynamic DNA constructs and protein-DNA complexes. Towards application of switchable FRET, I investigated aspects of the nucleotide selection mechanism of DNA polymerase.</p> <p>I further explored application of single-molecule imaging in the complex environment of the living cell. Photoswitching was used to resolve the precise localisations of individual fluorophores. I constructed a super-resolution fluorescence microscope to image fixed cellular structures and track the movement of individual fluorescent fusion proteins in live bacteria. I applied the method to directly visualise DNA repair processes by DNA polymerase I and ligase, generating a quantitative account of their repair rates, search times, copy numbers, and spatial distribution in the cell. I validated the approach by tracking diffusion of replisome components and their association with the replication fork. Finally, super-resolution microscopy showed dense clusters of SMC (Structural Maintenance of Chromosomes) protein complexes in vivo that have previously been hidden by the limited resolution of conventional microscopy.</p>