MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry
Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conver...
Principais autores: | Bendfeldt, K, Taschler, B, Gaetano, L, Madoerin, P, Kuster, P, Mueller-Lenke, N, Amann, M, Vrenken, H, Wottschel, V, Barkhof, F, Borgwardt, S, Klöppel, S, Wicklein, EM, Kappos, L, Edan, G, Freedman, MS, Montalbán, X, Hartung, HP, Pohl, C, Sandbrink, R, Sprenger, T, Radue, EW, Wuerfel, J, Nichols, TE |
---|---|
Formato: | Journal article |
Publicado em: |
Springer US
2018
|
Registros relacionados
-
Subcortical brain segmentation of two dimensional T1-weighted data sets with FMRIB's Integrated Registration and Segmentation Tool (FIRST)
por: Michael Amann, et al.
Publicado em: (2015-01-01) -
MRI characteristics are predictive for CDMS in monofocal, but not in multifocal patients with a clinically isolated syndrome
por: Nielsen Jessica M, et al.
Publicado em: (2009-05-01) -
Brain atrophy: an in-vivomeasure of disease activity in multiple sclerosis
por: Ernst Wilhelm Radü, et al.
Publicado em: (2013-11-01) -
Classifying individuals at high-risk for psychosis based on functional brain activity during working memory processing
por: Kerstin Bendfeldt, et al.
Publicado em: (2015-01-01) -
A comparison of brain magnetic resonance imaging lesions in multiple sclerosis by race with reference to disability progression
por: Yuri Nakamura, et al.
Publicado em: (2018-09-01)