Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images
Robust automated segmentation of white matter hyperintensities (WMHs) in different datasets (domains) is highly challenging due to differences in acquisition (scanner, sequence), population (WMH amount and location) and limited availability of manual segmentations to train supervised algorithms. In...
Hlavní autoři: | Sundaresan, V, Zamboni, G, Dinsdale, NK, Rothwell, PM, Griffanti, L, Jenkinson, M |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Elsevier
2021
|
Podobné jednotky
-
Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
Autor: Sundaresan, V, a další
Vydáno: (2021) -
Omni-supervised domain adversarial training for white matter hyperintensity segmentation in the UK Biobank
Autor: Sundaresan, V, a další
Vydáno: (2022) -
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities
Autor: Griffanti, L, a další
Vydáno: (2016) -
Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference
Autor: Sundaresan, V, a další
Vydáno: (2018) -
Brain tumour segmentation using a triplanar ensemble of U-Nets on MR images
Autor: Sundaresan, V, a další
Vydáno: (2021)