Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images
Robust automated segmentation of white matter hyperintensities (WMHs) in different datasets (domains) is highly challenging due to differences in acquisition (scanner, sequence), population (WMH amount and location) and limited availability of manual segmentations to train supervised algorithms. In...
Auteurs principaux: | Sundaresan, V, Zamboni, G, Dinsdale, NK, Rothwell, PM, Griffanti, L, Jenkinson, M |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Elsevier
2021
|
Documents similaires
-
Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
par: Sundaresan, V, et autres
Publié: (2021) -
Omni-supervised domain adversarial training for white matter hyperintensity segmentation in the UK Biobank
par: Sundaresan, V, et autres
Publié: (2022) -
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities
par: Griffanti, L, et autres
Publié: (2016) -
Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference
par: Sundaresan, V, et autres
Publié: (2018) -
Brain tumour segmentation using a triplanar ensemble of U-Nets on MR images
par: Sundaresan, V, et autres
Publié: (2021)