Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images
Robust automated segmentation of white matter hyperintensities (WMHs) in different datasets (domains) is highly challenging due to differences in acquisition (scanner, sequence), population (WMH amount and location) and limited availability of manual segmentations to train supervised algorithms. In...
Những tác giả chính: | Sundaresan, V, Zamboni, G, Dinsdale, NK, Rothwell, PM, Griffanti, L, Jenkinson, M |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Elsevier
2021
|
Những quyển sách tương tự
-
Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
Bằng: Sundaresan, V, et al.
Được phát hành: (2021) -
Omni-supervised domain adversarial training for white matter hyperintensity segmentation in the UK Biobank
Bằng: Sundaresan, V, et al.
Được phát hành: (2022) -
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities
Bằng: Griffanti, L, et al.
Được phát hành: (2016) -
Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference
Bằng: Sundaresan, V, et al.
Được phát hành: (2018) -
Brain tumour segmentation using a triplanar ensemble of U-Nets on MR images
Bằng: Sundaresan, V, et al.
Được phát hành: (2021)