Controlling nucleation and growth of metal halide perovskite thin films for high-Efficiency perovskite solar cells

Metal halide perovskite thin films can be crystallized via a broad range of solution-based routes. However, the quality of the final films is strongly dependent upon small changes in solution composition and processing parameters. Here, this study demonstrates that a fractional substitution of PbCl2...

Full description

Bibliographic Details
Main Authors: Sakai, N, Wang, Z, Burlakov, V, Lim, J, McMeekin, D, Pathak, S, Snaith, H
Format: Journal article
Language:English
Published: Wiley 2017
Description
Summary:Metal halide perovskite thin films can be crystallized via a broad range of solution-based routes. However, the quality of the final films is strongly dependent upon small changes in solution composition and processing parameters. Here, this study demonstrates that a fractional substitution of PbCl2 with PbI2 in the 3CH3 NH3 I:PbCl2 mixed-halide starting solution has a profound influence upon the ensuing thin-film crystallization. The presence of PbI2 in the precursor induces a uniform distribution of regular quadrilateral-shaped CH3 NH3 PbI3 perovskite crystals in as-cast films, which subsequently grow to form pinhole-free perovskite films with highly crystalline domains. With this new formulation of 3CH3 NH3 I:0.98PbCl2 :0.02PbI2 , this study achieves a 19.1% current-voltage measured power conversion efficiency and a 17.2% stabilized power output in regular planar heterojunction solar cells.