Non-reversible parallel tempering: a scalable highly parallel MCMC scheme
Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes used to sample complex high-dimensional probability distributions. They rely on a collection of N interacting auxiliary chains targeting tempered versions of the target distribution to improve the exploration of...
Үндсэн зохиолчид: | Syed, S, Bouchard-Cote, A, Deligiannidis, G, Doucet, A |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Wiley
2021
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Clone MCMC: Parallel high-dimensional Gaussian gibbs sampling
-н: Bǎrbos, A, зэрэг
Хэвлэсэн: (2018) -
On the Parallelization of MCMC for Community Detection
-н: Wanye, Frank, зэрэг
Хэвлэсэн: (2023) -
Scalable Metropolis-Hastings for exact Bayesian inference with large datasets
-н: Cornish, R, зэрэг
Хэвлэсэн: (2019) -
Parallel Local Approximation MCMC for Expensive Models
-н: Conrad, Patrick Raymond, зэрэг
Хэвлэсэн: (2019) -
Parallel and distributed MCMC inference using Julia
-н: Yu, Angel
Хэвлэсэн: (2018)