Non-steady state operation of polymer/TiO2 photovoltaic devices

We present data on the initial period of operation of Gilch-route NMH-PPV/TiO2 composite solar cells (CSCs) which show that during this period the CSCs operate in a non-steady state regime. The behavior is complex and may include a gradual rise of the open circuit voltage (V-oc) and of the short-cir...

Full description

Bibliographic Details
Main Authors: Kirov, K, Burlakov, V, Xie, Z, Henry, B, Carey, M, Grovenor, C, Burn, P, Assender, H, Briggs, G
Format: Conference item
Published: 2004
Description
Summary:We present data on the initial period of operation of Gilch-route NMH-PPV/TiO2 composite solar cells (CSCs) which show that during this period the CSCs operate in a non-steady state regime. The behavior is complex and may include a gradual rise of the open circuit voltage (V-oc) and of the short-circuit current density (J(sc)) with time, a passage through a maximum of either or both parameters, and even a sign reversal. The mechanisms most probably contributing to the transient processes are: i) diffusion driven redistribution of charges resulting in the build up of a quasi steady state charge density profile across the device; ii) photo-doping resulting in a relatively slow increase of the average charge carrier concentration and consequently of the conductivity of the device. The latter is responsible for a strong decrease in V-oc, and is evidenced by the significant increase in dark current after device illumination.