Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds
We prove that if (X, d, m) is a metric measure space with m(X) = 1 having (in a synthetic sense) Ricci curvature bounded from below by K> 0 and dimension bounded above by N∈ [1 , ∞) , then the classic Lévy-Gromov isoperimetric inequality (together with the recent sharpening counterparts prove...
Main Authors: | Cavalletti, F, Mondino, A |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Springer
2016
|
פריטים דומים
-
Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds
מאת: Cavalletti, F, et al.
יצא לאור: (2017) -
Almost euclidean isoperimetric inequalities in spaces satisfying local Ricci curvature lower bounds
מאת: Cavalletti, F, et al.
יצא לאור: (2018) -
Isoperimetric inequalities for finite perimeter sets under lower Ricci curvature bounds
מאת: Cavalletti, F, et al.
יצא לאור: (2018) -
Measure rigidity of Ricci curvature lower bounds
מאת: Cavalletti, F, et al.
יצא לאור: (2015) -
Structure Theory of Metric-Measure Spaces with Lower Ricci Curvature Bounds
מאת: Mondino, A, et al.
יצא לאור: (2019)