Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds
We prove that if (X, d, m) is a metric measure space with m(X) = 1 having (in a synthetic sense) Ricci curvature bounded from below by K> 0 and dimension bounded above by N∈ [1 , ∞) , then the classic Lévy-Gromov isoperimetric inequality (together with the recent sharpening counterparts prove...
Автори: | Cavalletti, F, Mondino, A |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Springer
2016
|
Схожі ресурси
Схожі ресурси
-
Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds
за авторством: Cavalletti, F, та інші
Опубліковано: (2017) -
Almost euclidean isoperimetric inequalities in spaces satisfying local Ricci curvature lower bounds
за авторством: Cavalletti, F, та інші
Опубліковано: (2018) -
Isoperimetric inequalities for finite perimeter sets under lower Ricci curvature bounds
за авторством: Cavalletti, F, та інші
Опубліковано: (2018) -
Measure rigidity of Ricci curvature lower bounds
за авторством: Cavalletti, F, та інші
Опубліковано: (2015) -
Structure Theory of Metric-Measure Spaces with Lower Ricci Curvature Bounds
за авторством: Mondino, A, та інші
Опубліковано: (2019)