An artificial vector model for generating abnormal electrocardiographic rhythms
We present generalizations of our previously published artificial models for generating multi-channel ECG to provide simulations of abnormal cardiac rhythms. Using a three-dimensional vectorcardiogram (VCG) formulation, we generate the normal cardiac dipole for a patient using a sum of Gaussian kern...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Journal article |
Language: | English |
Published: |
Institute of Physics (IOP) Publishing
2010
|
Subjects: |
Summary: | We present generalizations of our previously published artificial models for generating multi-channel ECG to provide simulations of abnormal cardiac rhythms. Using a three-dimensional vectorcardiogram (VCG) formulation, we generate the normal cardiac dipole for a patient using a sum of Gaussian kernels, fitted to real VCG recordings. Abnormal beats are specified either a perturbations to the normal dipole or as new dipole trajectories. Switching between normal and abnormal beat types is achieved using a first-order Markov chain. Probability transitions can be learned from real data or modeled by coupling to heart rate and sympathovagal balance. Natural morphology changes from beat-to-beat are incorporated by varying the angular frequency of the dipole as a function of the inter-beat (RR) interval. The RR interval time series is generated using our previously described model whereby time- and frequency-domain heart rate (HR) and heart rate variability characteristics can be specified. QT-HR hysteresis is simulated by coupling by Gaussian kernels associated with the T-wave in the model with a nonlinear factor related to the local HR (determined from the last n RR intervals). Morphology changes due to respiratory frequency. We demonstrate an example of the use of this model by switching HR-dependent T-wave alternans (TWA) with and without phase-switching due to ectopy. Application of our model also reveals previously unreported effects of common TWA estimation methods. |
---|