Iridium-catalyzed reductive allylation of esters

The catalytic reductive transformation of carboxylic esters into α-branched ethers is described. The procedure pivots on the chemoselective iridium-catalyzed hydrosilylation of ester and lactone functionality to afford a silyl acetal intermediate. Upon treatment with a Lewis acid, these hemilabile i...

Disgrifiad llawn

Manylion Llyfryddiaeth
Prif Awduron: Xie, L, Rogers, J, Anastasiou, I, Leitch, J, Dixon, D
Fformat: Journal article
Iaith:English
Cyhoeddwyd: American Chemical Society 2019
Disgrifiad
Crynodeb:The catalytic reductive transformation of carboxylic esters into α-branched ethers is described. The procedure pivots on the chemoselective iridium-catalyzed hydrosilylation of ester and lactone functionality to afford a silyl acetal intermediate. Upon treatment with a Lewis acid, these hemilabile intermediates dissociate to form reactive oxocarbenium ions, which can be intercepted by allyltributyltin nucleophiles, resulting in the formation of valuable α-branched alkyl-alkyl ether derivatives. This reductive allylation procedure was found to be amenable to a range of carboxylic ester starting materials, and good chemoselectivity for ethyl over tert-butyl esters was demonstrated. Furthermore, downstream synthetic manipulation of α-amino acid-derived products led to the efficient formation of pyrrolidine, piperidine, and azepane frameworks.